+7 (495) 229-0436   shopadmin@itshop.ru 119334, г. Москва, ул. Бардина, д. 4, корп. 3
 
 
Вы смотрели
Вход
 
 
Каталог
 
Категории
 
 
Подписка на новости
Новости ITShop
Windows 7 и Office: Новости и советы
Обучение и сертификация Microsoft
Вопросы и ответы по MSSQLServer
Delphi - проблемы и решения
Adobe Photoshop: алхимия дизайна
 
Ваш отзыв
Оцените качество магазина ITShop.ru на Яндекс.Маркете. Если вам нравится наш магазин - скажите об этом Google!
 
 
Способы оплаты
 
Курс расчета
 
 1 у.е. = 104.24 руб.
 
 Цены показывать:
 
 
 
 
  
Направления
Artificial Intelligence   Big Data   Blockchain   CASE   PostgreSQL   Python   Бизнес-тренинги   Интернет   Информационная безопасность   ИТ-Обучение   Корпоративные информационные системы   Мобильные приложения   Операционные системы Linux   Операционные системы Unix   Офисное ПО   Разработка веб-приложений   Разработка ПО   Свободное ПО   Семантические технологии   Системное администрирование   Средства тестирования   СУБД и хранилища данных   Управление бизнесом   Управление бизнес-процессами   Управление ИТ-инфраструктурой   Управление качеством   Управление персоналом   Управление проектами   Управление разработкой ПО  
 

Продукт  

Курс "NLP с Python"

Цена: 90 000 руб.
 
Звонок с сайта Купить дешевле
 
Продолжительность - 5 дней
Расписание: 24.02.2025 (Москва)
 
Специализация:  Авторские курсы: СУБД и хранилища данных
Код: PNLP
 

Практический Курс «NLP с Python» для Data Scientist’ов, специалистов по машинному обучению и Python-разработчиков NLP-приложений, которые хотят освоить продвинутые методы решения задач обработки естественного языка с помощью нейронных сетей.

NLP (Natural Language Processing, NLP) или обработка естественного языка — это целое направление искусственного интеллекта и математической лингвистики, направленное на анализ (компьютерное понимание) текста и речи, а также их грамотный синтез (генерацию нового). NLP-технологии нужны не только для распознавания живого языка средствами искусственного интеллекта. Они дают возможность адекватного взаимодействия человека с вычислительными системами.

Классическими NLP-задачами считаются следующие:

  • определение эмоциональной окраски (тональности) текста,
  • вопросно-ответные системы,
  • классификация текстов,
  • построение выводов по тексту;
  • распознавание речи;
  • анализ текста, включая извлечение данных, информационный поиск и анализ высказываний;
  • генерация текстов;
  • синтез речи;
  • машинный перевод;
  • автоматическое реферирование, аннотирование и упрощение текстовой информации.

Сегодня большинство этих задач решается с помощью современных методов Machine Learning — нейросетевых алгоритмов, которые обладают свойством самообучаемости и способны решать проблемы в условиях неполноты и изменчивости входной информации.

Соотношение теории к практике 50/50

Продолжительность курса 40 академических часов, проводится в течение 10 дней.

Курс «NLP с Python» представляет собой прикладные основы обработки естественного языка с помощью Machine Learning, включая всю необходимую теорию и практику по этой области искусственного интеллекта. В программе рассмотрены операции преобразования текстовых данных для дальнейшей обработки нейросетевыми алгоритмами: стемминг, лемматизация, векторизация. Приведены базовые NLP-задачи, которые могут быть решены с помощью методов машинного обучения: классификация и распознавание текстов, анализ звуковой информации. Большое внимание уделено практическому решению задач с использованием методов машинного обучения на языке Python с применением самых передовых нейросетей: BERT, GPT-2. Также курс «NLP с Python» включает изучение особенностей промышленной разработки Data Science решений и их эффективного развертывания в production: фреймворки Flask, Flacon, Django, технологии контейнеризации с помощью Docker, специализированные облачные сервисы.

На практике вы самостоятельно создадите, обработаете и проанализируете тексты и звуковые сигналы, а также создадите собственный production-сервис для решения NLP-задач. В результате освоения программы курса вы овладеете не только основными навыками Machine Learning, необходимыми для обработки естественного языка, но и освоите популярные фреймворки и технологии для промышленного развертывания Data Science решений.

Требования к предварительному уровню подготовки слушателей:

  • основы python;
  • основы линейной алгебры;
  • основы математической статистики.

Программа курса «NLP с Python»

Модуль 1. Введение в NLP

Теоретическая часть: основные понятия; классификация задач, решаемых с помощью методов NLP, стандартный pipeline обработки текстовых данных (очистка, стемминг, лемматизация, классические представления текстовых данных: Bow, Tf-Idf). Обзор алгоритмов стемминга и лемматизации. Популярные библиотеки для работы с текстовыми данными (nltk, spacy, gensim, TextBlob).

Практическая часть: первичный анализ текстовых данных, предобработка текстовых данных, построение простейшей модели бинарной классификации на примере задачи определения спама в смс сообщениях.

Домашняя работа: улучшение простейшей модели классификации. Использование различных подходов к обработке текстовых данных и различных моделей машинного обучения.

Модуль 2. Embeddings

Теоретическая часть: векторные представления слов/текста. Алгоритмы обучения векторных представлений: word2vec, Glove. Векторные представления текста: doc2vec. Embedding своими руками с помощью SVD разложения. Предобученные векторные представления для английского и русского языка.

Практическая часть: обучение векторного представления слов и его использование в задаче множественной классификации на примере датасета 20 News groups.

Домашняя работа: улучшение результатов работы построенной модели с использованием предобученных векторных представлений.

Модуль 3. Применение свёрточных нейронных сетей в NLP

Теоретическая часть: сверточные нейронные сети, параметры сверточных нейронных сетей, параметры обучения сверточных нейронных сетей, архитектура сверточных нейронных сетей в NLP. Ответ на вопроc когда использовать сверточные сети, а когда классические модели машинного обучения в NLP.

Практическая часть: использование сверточных нейронных сетей на примере задачи классификации твитов (датасет Рубцовой).

Домашняя работа: улучшение качества работы построенной модели.

Модуль 4. Рекуррентные нейронные сети

Теоретическая часть: архитектура RNN, CRNN, LSTM, GRU. Нейронные сети с attention. Задачи класса sequence to sequence. Машинный перевод. Архитектура нейронных сетей для машинного перевода.

Практическая часть: пишем нейронную сеть для машинного перевода "from scratch".

Домашняя работа: тюнинг нейронной сети/обучение своей нейронной сети на другой паре языков.

Модуль 5. Работа со звуковой информацией

Теоретическая часть: физическая природа звука, оцифровка звукового сигнала. Виды цифровых представлений звукового сигнала (ряды, изображения). Speech to text / text to speech, подходы к решению. SOTA нейронные сети для Speech to text.

Практическая часть: пишем рекуррентную нейронную сеть классификации музыкальных жанров (речевых команд).

Домашняя работа : обучить сверточную нейронную сеть на представлениях звуковых сигналов в виде изображения на датасете с речевыми командами.

Модуль 6. SOTA нейронные сети в NLP

Теоретическая часть: предобученные нейронные сети в NLP, обзор архитектур нейронных сетей Bert и GPT-2. Режимы работы Bert и GPT-2. Использование Bert в задаче определения близких по смыслу текстов.

Практическая часть: решение задачи определения близких по смыслу текстов. Использование подхода без учителя. Использование Bert.

Домашняя работа : решение задачи с помощью GPT-2.

Модуль 7. Key word extraction / text summarization

Теоретическая часть: подходы к решению задач key word extraction, text summarization. Алгоритм PageRank. Архитектуры нейронных сетей для задач key word extraction и text summarization

Практическая часть: пишем нейронную сеть для key word extraction.

Домашняя работа : пишем нейронную сеть для text summarization.

Модуль 8. Named Entity Recognition

Теоретическая часть: подходы к решению задач NER. Condition Random Fields. Нейронные сети для решения задачи NER.

Практическая часть: решаем NER c помощью CRF.

Домашняя работа : пишем нейронную сеть для NER.

Модуль 9. Использование нейронных сетей в production

Теоретическая часть: сериализация/десериализация объектов в Python, фреймворки Flask, Flacon, Django. Контейнеризация, Docker. Использование сервиса с нейронной сетью в облаке, AWS. Специализированные серверы для использования нейронных сетей (tensorflow serving, torchServe)

Практическая часть: создание API с нейронной сетью с использованием специализированных серверов.

Домашняя работа: создание API с несколькими нейронными сетями.

Дополнительные разделы:

  • VAE (variational autoencoders) for NLP
  • text semantic segmentation
  • natural language inference
  • text generation

Программа читается совместно с Школа Больших Данных.

В конце обучения на курсе проводится итоговая аттестация в виде теста или на основании оценок за практические работы, выполненных в процессе обучения


В современном мире сложно обойтись без информационных технологий и их производных - компьютеров, мобильных телефонов, интернета и т.д., особенно в крупных компаниях и государственных организациях, работающих с большим количеством людей, а не только с парой VIP-клиентов, как это может быть в случае небольшой компании. А там, где есть большое количество контрагентов, заявителей и т.д. - не обойтись без баз данных, необходимых для обработки информации. Естественно, что времена гроссбухов и карточек, памятных многим по библиотекам, давно прошли, сегодня используются персональные компьютеры и электронные базы данных.

Сегодня невозможно представить работу крупнейших компаний, банков или государственных организаций без использования баз данных и средств Business Intelligence. Базы данных позволяют нам хранить и получать доступ к большим объемам информации, а система управления базами данных (СУБД) — осуществлять менеджмент доступных хранилищ информации.

В Учебном центре « Интерфейс» Вы научитесь эффективно использовать системы управления базами данных: быстро находить нужную информацию, ориентироваться в схеме базы данных, создавать запросы, осуществлять разработку и создание баз данных.

Обучение позволит Вам не только получить знания и навыки, но и подтвердить их, сдав соответствующие экзамены на статус сертифицированного специалиста . Опытные специалисты по СУБД Microsoft SQL Server или Oracle могут быть заинтересованы в изучении систем бизнес-аналитики. Это задачи достаточно сложные, использующие громоздкий математический аппарат, но они позволяют не только анализировать происходящие процессы, но и делать прогнозы на будущее, что востребовано крупными компаниями. Именно поэтому специалисты по бизнес-аналитике востребованы на рынке, а уровень оплаты их труда весьма и весьма достойный, хотя и квалифицированным специалистам по базам данных, администраторам и разработчикам, жаловаться на низкий уровень дохода тоже не приходится. Приходите к нам на курсы и получайте востребованную и высокооплачиваемую профессию. Мы ждем Вас!

В конце обучения на курсах проводится итоговая аттестация в виде теста или путём выставления оценки преподавателем за весь курс обучения на основании оценок, полученных обучающимся при проверке усвоения изучаемого материала на основании оценок за практические работы, выполненные в процессе обучения.

Учебный центр "Интерфейс" оказывает консалтинговые услуги по построению моделей бизнес-процессов, проектированию информационных систем, разработке структуры баз данных и т.д.

  • Нужна помощь в поиске курса?
    Наша цель заключается в обеспечении подготовки специалистов, когда и где им это необходимо. Возможна корректировка программ курсов по желанию заказчиков! Мы расскажем Вам о том, что интересует именно Вас, а не только о том, что жестко зафиксировано в программе курса. Если вам нужен курс, который вы не видите на графике или у нас на сайте, или если Вы хотите пройти курс в другое время и в другом месте, пожалуйста, сообщите нам, по адресу mail@interface.ru или shopadmin@itshop.ru
  • Поговорите со своим личным тренинг-менеджером!
    Мы предоставляет Вам индивидуальное обслуживание. Если у вас есть потребность обсудить, все вопросы касательно обучения, свяжитесь, пожалуйста c нами по телефонам: +7 (495) 925-0049, + 7 (495) 229-0436. Или любым другим удобным для Вас средствами связи, которые Вы можете найти на сайтах www.interface.ru или www.itshop.ru

 
  
Помощь
Задать вопрос
 программы
 обучение
 экзамены
 компьютеры
Бесплатный звонок
ICQ-консультанты
Skype-консультанты

Общая справка
Как оформить заказ
Тарифы доставки
Способы оплаты
Прайс-лист
Карта сайта
 
Бестселлеры
Основы TOGAF 9
Atlassian JIRA - система управления проектами и задачами
Oracle. Программирование на SQL и PL/SQL
Oracle. Настройка языка SQL
Моделирование предметной области с использованием Sparx Systems Enterprise Architect
Администрирование баз данных Oracle
Java Standard Edition 9 (Java SE9). Язык программирования Java, базовый курс или часть 1
Выявление и формирование пользовательских требований
Расширенные возможности управления проектами в JIRA: планирование, контроль, бюджет с применением плагинов Tempo
 
Новинки
 

 

О нас
Интернет-магазин ITShop.ru предлагает широкий спектр услуг информационных технологий и ПО.

На протяжении многих лет интернет-магазин предлагает товары и услуги, ориентированные на бизнес-пользователей и специалистов по информационным технологиям.

Хорошие отзывы постоянных клиентов и высокий уровень специалистов позволяет получить наивысший результат при совместной работе.

В нашем магазине вы можете приобрести лицензионное ПО выбрав необходимое из широкого спектра и ассортимента по самым доступным ценам. Наши менеджеры любезно помогут определиться с выбором ПО, которое необходимо именно вам. Также мы проводим учебные курсы. Мы приглашаем к сотрудничеству учебные центры, организаторов семинаров и бизнес-тренингов, преподавателей. Сфера сотрудничества - продвижение бизнес-тренингов и курсов обучения по информационным технологиям.



 

О нас

 
Главная
Каталог
Новинки
Акции
Вакансии
 

Помощь

 
Общая справка
Как оформить заказ
Тарифы доставки
Способы оплаты
Прайс-лист
Карта сайта
 

Способы оплаты

 

Проекты Interface Ltd.

 
Interface.ru   ITShop.ru   Interface.ru/training   Olap.ru   ITnews.ru  
 

119334, г. Москва, ул. Бардина, д. 4, корп. 3
+7 (495) 229-0436   shopadmin@itshop.ru
Проверить аттестат
© ООО "Interface Ltd."
Продаем программное обеспечение с 1990 года